TWIP and FLDPLN applications for Watershed Restoration Activities

Jeff Neel¹, Jude Kastens², Mike Houts², Kevin Dobbs², Debra Baker³, Frank Norman⁴

Talking Points

Agenda

- Soapbox
- Job at Hand
- Toolbox & Example Applications
 - TWIP, FLDPLN, Fluvial Geomorphology & Integration
- Summary

Watershed Restoration

 Shift from a program-by-program, source-by-source, pollutant-by-pollutant approach => integrated, place-based watershed protection & restoration effort

"synergistic systems approach"

- Land use change (root problem)
- Hydrologic change
- Geomorphologic change
- NPS pollution (TMDLs)
- Critical habitats for declining species
- Wildlife corridors connected to uplands
- Fresh water supplies
- Long-term system health

To What Future Are We Going?

Native & Early Pioneer (Past)

Ag-dominated (Present)

Healthy Systems (Future)

Watershed Restoration: Multiple Objectives

But Common Threads

- Restore or approximate natural hydrologic function
- Attenuate effects of NPS pollution and erosion
- Improve native habitat connectivity and ensure redundancy
- Sequester carbon and increase pollinators
- Clean fresh water supplies
- Use scientific, systems approach & natural designs as guides
- ⇒ Restore and protect wetland and floodplain functions in watershed context
 - \Rightarrow Increased water storage and filtration
 - \Rightarrow Treats NPS pollution and captures sediment
 - ⇒ Flood mitigation and stream maintenance
 - ⇒ High biodiversity
 - ⇒ Sequestered carbon and more pollinator habitat
 - ⇒ Improves water quality and storage

"...and gainful employment in caricature & comedy careers aren't looking real promising either."

Amplification of Positive

Attenuation of Negative

Job at Hand

- Inventory actual and potential wetlands (TWIP)
- Evaluate floodplain connectivity (FLDPLN)
- Assess stream geomorphology and channel evolution
- Integrate tools so practical planning, design, and implementation at watershed scales

How birds see the world.

Topographic Wetland Identification Process (TWIP)

- TWIP Development:
 - 2008, 2009, 2010, 2011, 2013 EPA WPDGs
 - Develop uniform, agency-accepted process to ID wetlands
 - Upper Wakarusa R. watershed (HUC-10)
 - Cottonwood R. and Neosho R. sub-watersheds (4 HUC-12s) above John Redmond
 - LiDAR acquisition
 - Rock Creek-Neosho Watershed (HUC 10)
 - KBS applying to 100 sub-watersheds (HUC-12) through add'l grant/ intern program
 - KBS modifying for applications to playas in western Kansas

LiDAR Inventory

TWIP Inventory

TWIP Playas

TWIP: Topographic Wetland Identification Process

TWIP primarily based on:

- Topographic Wetness Index (TWI)
 - flow accumulation and slope => LN ([flowacc]/ tan [slope])
 - identifies areas where soils may remain wetter

Depressions

- Sink analysis of LiDAR to ID "fill" locations
- Sink fill level equals depth

So...if an area is a depression, then its possibly a wetland

And if an area is identified by the TWI, then its possibly a wetland

Therefore...if its is both...then it's a Potential Wetland Area (PWA)

Topographic Wetland Identification Process (TWIP) to Calculate Potential Wetland Areas (PWA)

TWIP: Topographic Wetland Identification Process

TWIP enhanced by:

- Detected Wetness
 - Landsat ETM (bands 4,5,7)
 - NAIP-NIR Imagery (bands 3, 4)
- Landscape Context
 - Land use, water bodies, stream channels, roads
- Channel masking, culvert/ bridge breaching, pond masking

So...if an area is a Potential Wetland Area (PWA)

And is also wet in the imagery... it is a Likely Wetland Area (LWA)

PWA and LWA classification enhanced by context and masking

Addition of ancillary attributes

TWIP: Upper Wakarusa Example

■ waterbodies ■ channel ■ roadside ■ upland

perry_pwa												
	FID	Shape	ld	sq_mtrs	acres	channel	water	road	upland	LC	TM_wet	wtlnd_prob
P	6203	Polygon	0	6432.196167	1.589424	yes	yes	no	no	50	yes	likely
	6204	Polygon	0	186.37677	0.046055	no	no	no	yes	20	no	potential
	6205	Polygon	0	213.542092	0.052767	no	no	yes	no	30	no	potential
	6206	Polygon	0	1996.547871	0.493356	no	yes	no	no	30	yes	likely
	6207	Polygon	0	9475.403195	2.341414	no	yes	no	no	50	yes	likely
	6208	Polygon	0	146.483755	0.036197	no	no	no	yes	40	no	potential
	6200	Daluman		400 000 470	0.404000					20		

Table □ - | ♣ - | ♣ № □ @ × PWA_erase_bkf FID Shape * ld sq mtrs acres NHD chanl waterbody roadside upland landcover TM wet NAIP wet wtlnd prob 0 Polygon 1 Polygon 158.376135 | 0.039136 | no no no 30 no likely wetland yes yes 241.23422 0.059611 no no no 30 no potential wetland yes no 2 Polygon 0 146.483755 0.036197 no no no yes 30 no yes likely wetland 3 Polygon 30 yes likely wetland 0 158.376135 0.039136 no no no yes no likely wetland 4 Polygon 186.37677 0.046055 yes 30 no no no no yes 5 Polygon 166.430262 0.041126 yes no no no 30 yes yes likely wetland 6 Polygon 230.160896 | 0.056874 | yes 30 no potential wetland no no no no 269.434407 0.066579 yes 7 Polygon no no no 30 no yes likely wetland 8 Polygon 335.043568 0.082792 yes no no no 30 no yes likely wetland

Toolbox: FLDPLN Inundation Libraries

FLDPLN can be used to:

- Create stage dependent floodplain extent libraries
- Identify connective relationships between floodwaters and floodplain features
 - Wetlands & riparian areas
 - Flood frequency extent
 - Proper functioning condition
- Evaluate stream geomorphologic and evolutionary processes
 - Approximate bankfull channel and floodprone area
 - Extract geomorphological variables (W/D ratio, Entrenchment)
 - Visually assess stream conditions

FLDPLN Inundation Extent Library: Four Mile Creek Watershed

- Regional Curves
- "Assessment, Geomorphic Definition and Documentation of Kansas Stream Corridor Reference Reaches
 - EPA WPDG to State Conservation Commission
- Blue-print for "stable" channel forms in different hydrophysiographic provinces
- Drainage area regression equations for:
 - Bankfull discharge, cross-section, width,
 depth
- E.g., Flint Hills Regional Curves
 [BkfW (ft)] = 20.04*[DA (sqmi)]^{0.3743}

"...and gainful employment in caricature & comedy careers aren't looking real promising either."

- Regional Curves Incorporated into FLDPLN
- Flint Hills Regional Curves, Kansas
 - BkfD inundation extent should approximate bankfull stream channel
 - 2BkfD inundation extent should approximate floodprone area
 - Floodprone Width: Bankfull Width = Entrenchment Ratio

BkfD inundation extent should approximate bankfull stream channel 2BkfD inundation extent should approximate floodprone area

Other Applications

- Playa Mapping
- Riparian Potential & Proper Functioning Condition
- BMP Locator
- "Waffle" and wetland capacity for watershed storage and natural hydrology

Playa Mapping: LiDAR & TWIP

Playa Mapping: LiDAR & TWIP

Potential Natural Vegetation & Target Population

Riparian Forest Mapping (RIP-FOR)

BMP Applications

Little Grasshopper Creek Watershed

Parameter	Acres	Watershed Percentage			
Watershed	30749	100.0			
Riparian Area (2ACW buffer + 1ACW channel)	1783	5.8			
Riparian Forest Target Area*	1322	4.3			
Riparian Non-Forest Area*	461	1.5			
Riparian Forest Target Area	Acres	Potential BMPs to be Delivered by Conservation Program Partners			
Riparian Forest Target Area	1322	Evaluate Floodplain Connectivity, PFC, & Forest BMPs			
Riparian Forest Within Target Area	771	Evaluate PFC & Identify Forest Stand Improvement Projects			
Non-Forest Within Target Area	551	Evaluate Floodplain Connectivity & Establish Forest			
Grassland	271	Low Priority Forest Establishment			
Cropland or Developed	280	High Priority Forest Establishment			
Properly Functioning Riparian Forest in 5Y Floodplain of Target Area	251	Protect PFC Forest			
Functional-at-Risk Riparian Forest in 5-10Y Floodplain of Target Area	79	Manage/ Improve At-Risk Forest			
Non-Functioning Forest Not Connected to 10Y Floodplain in Target Area	599	Investigation & Potential Remedial Action (Riparian Hotspots)			
Riparian Non-Forest in 5Y Floodplain of Target Area	137	Establish Forest			
Riparain Non-Forest in 5-10Y Floodplain of Target Area	67	Establish Forest			
Riparain Non-Forest Not Connected to 10Y Floodplain in Target Area	347	Investigation & Potential Remedial Action (Riparian Hotspots)			
Riparian Non-Forest Area	Acres	Potential BMPs to be Delivered by Conservation Program Partners			
Riparian Non-Forest Area*	461	Evaluate Floodplain Connectivity & Grassland Buffer BMPs			
Riparian Forest Outside Target Area	207	Manage/ Evaluate Forest			
Riparian Non-Forest Outside Target Area	254	Evaluate Floodplain Connectivity & Evaluate Projects			
Grassland	196	Grassland Management			
Cropland or Developed	58	High Priority Grassland and Waterway Establishment			
Riparian Area (Forest or Non-Forest) in 5Y Floodplain Outside Target Area	14	Protect Riparian-Wetland Floodplain			
Riparian Area (Forest or Non-Forest) in 5-10Y Floodplain Outside Target Area	7	Manage/ Improve Riparian-Wetland Floodplain			
Riparian Area (Forest or Non-Forest) Not Connected to 10Y Floodplain	440	Improve Method to Evaluate Upstream Tributaries as Necessary#			

Waffle Project

Using Raised roads as natural levees to store/slow water run-off

Red River, North Dakota

Since 1880's major floods every 4-6 years.... plus a devastating flood every decade.

Drought also common to the region.

Waffle is an effort to be better prepared to handle both scenarios.

Applications in KS: Develop wetland capacity to slow, store & treat runoff; increase infiltration; increase lateral flow & GW recharge; Increase wildlife refugia and landscape biodiversity

An Overview of the Waffle Concept, Energy and Environmental Research Center, 2008

Waffle Concept

Summary: Watershed Restoration Toolbox

TWIP

- Inventories of potential and likely wetlands with descriptors
- Identify wetland creation, restoration, and protection sites
- Future: use TWIP to identify watershed storage potential and evaluate hydrographs
- Future: map playas, playa watersheds, and playa capacity

FLDPLN

- Ability to map lake affected wetlands
- FLDPLN inundation libraries showing promise to map flood frequency, floodplain connectivity, bankfull width, and floodprone area
- Helps to predict floodplain wetland presence and riparian forest connectivity (PFC)

Fluvial Geomorphology

- FLDPLN showing promise for integration with stream classification approaches, but more evaluation required
- Indicating some usefulness for understanding stream evolutionary sequences, with watershed implications for restoration

Integration

 Integration of tools into watershed restoration approaches will increase understanding of design, planning, and implementation needs

If you want a happy ending, it depends, of course, on where you stop the story

