

Climate Risk & Resilience Goal

Mainstream Natural Infrastructure to Reduce Risk from Flooding, Storms, & Sea Level Rise

By 2020, change 10% of coastal infrastructure spending to reduce risks and increase habitat restoration & conservation.

SNAP Coastal Defenses

Leading ecologists, economists, engineers & policy wonks

- Identify where natural defenses are cost-effective;
- Develop practical guidance for decision-makers
- Identify incentives for reducing risks to people and nature

Location	Decision Target(s)	Type of Information	Key Factors & Lessons Learned
Philippines	Senate Bill 2179, Coastal Greenbelt Act of 2014	 Literature- based Values 	 Act under consideration for protection of mangroves for conservation & risk reduction. Senator Aquino's introduction letter includes values of mangroves for reductions in waves and storm surge. Act includes long-term program for community-based restoration.
Belize	Belize CZM Plan	• Scenario Analysis	 The CZMAI tasked with developing a CZM plan. Assessed alternatives with InVEST. Scenario analysis helped identify likely trade-offs. Difficult to get stakeholder input on alternative scenarios

Built C	apital Floode	d with Reef Loss in a
	100-yr	event
	-	(Billions)
	1 Indonesia	36.5
	2 Philippines	31.1
	3 Malaysia	27.1
	4China	26.8
	5 Mexico	18.9
	6Cuba	9.2
	7UAE	7.8
	8 Saudi Arabia	7.3
	9USA	6.5
	10 Thailand	2.9
	11 Vietnam	2.3
	12 Jamaica	2.0
	13 Taiwan	1.8
	14 Dom. Republic	1.8

Annual Ex	pec	ted Benefi	t (\$) fro	m Coral Reets
In Avoide	d F	lood Dama	ges to I	nfrastructure
			Millions	
	1	Indonesia	639	
	2	Milippines	590	
	013	Malaysia	452	
:50	4	Mexico	452	
4013	5	Cuba	401	
ixe ^O	6	Saudi Arabia	138	
h. imi.	7	Dom Rep	96	
or L'iles	8	Puerto Rico	77	
ko be	9	Taiwan	61	
ror limited Distr	10	Jamaica	46	
	11	Vietnam	42	
	12	Myanmar	33	
	13	Thailand	33	
	14	United States	17	

Partnership with Swiss Re Where are nature-based defenses cost effective? <u>Aims</u>

- Work with worlds 2nd largest re-insurer
- Public cost effectiveness model that includes nature

• Add ecosystem (co)benefits

Reguero, Bresch, Beck et al. 2015. Coastal Eng. Proc. & in review Scientific Reports

Damages Curves

Damage curves (water depth) for different types of buildings
Aggregated into 17 types from the full USACE-FEMA catalogue
Wind Damage curve used from Climada default wind model

Risk	Reduction Measures
Measure	Criteria
Wetland Restoration	6 Counties with the highest losses in assets where at least 25 miles of salt marsh could be restored by bay.
Wetland Conservation	125 miles of wetlands protected
Local Levees Priority	6 ft "hills" built to protect 532,000 existing houses on the 6 counties that experience most damages
Sandbags	Used in 2.9 million houses for all Cat 3 hurricanes across all counties in the study area.
Local Floodwalls	Concrete blocks (4 ft) built to protect 1.9 million houses across all counties
Levees	20 ft levees constructed around Houma & New Orleans, LA - 340 miles.
Barrier Island Restoration	All Mississippi coastal counties
Oyster Reef Restoration	1000 miles restored in all counties with high suitability
Beach Nourishment	All Coastal Counties in Texas.
Home Elevation	Elevate 481,841 existing houses by 8ft in 6 counties that experience the most damages

	SCENARIO 1 (CONSERVATIVE)				
MEASURE	% Wave Reduction	% Surge Reduction	hazard elevation cutoff (m)	type cutoff	
Local levees - homes	20	0	1.8	overtopping	
Levees	60	0	6	frontline	
Sandbags	0	0	0.6	overtopping	
Beach Nourishment	75	0	0		
Local Floodwalls	0	0	1.2	overtopping	
Home Elevation	0	0	3	elevation	
Wetland restoration	30	10	0		
Barrier island restoration	20	5	0		
Oyster reef restoration	20	0	0		
			dz = Hazard + subside D(i) = MDD(dz) * PAA(
	Hazard = FH x Ft + SLR -FL' MSL		OV 'EL' Subsidence	Zi	

Oyster Reef Restoration 1050 miles of Oyster Reefs restored in 24 counties with high restoration suitability see Restoration Explorer in www.maps.coastalresilience.org Penetration varied 15% to 50% Unit Cost of Measure: \$1,500,000/mile of protected shoreline Total Cost: \$1.6 Billion Co-Benefits of Oyster Reefs to Fisheries: \$23,241/ mile of reef restored / year.

Training Videos

www.coastalresilience.org/economics-of-coastal-adaptation/

www.coastalresilience.org/training

Coastal Defense App www.youtube.com/watch?v=VZkstFZedAg

Grenada Reef Restoration Video-

http://coastalresilience.org/world-premier-video-mapping-thereef-in-grenada/

Preview: Economics of Coastal
Adaptation

Summary

- Coastal Habitats- a First Line of Defense
- We can Account for Natural Defenses
- They are Cost Effective
- Decision support tools can inform their use

