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Objectives
1. To asses the ability of geospatial and machine learning based modeling to predict presence 

of ground water discharge springs

2. Produce a predictive model that can be applied to a broader area of interest in locating areas 
where ground water springs are more likely to occur
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Introduction
Remote sensing, geospatial modeling and machine learning have been successfully used to 
spatially model where ground water discharge occurs (Howard & Merrifield, 2010; Pourtaghi & 
Pourghasemi, 2014; Gerlach et al., 2022).

Gerlach et al. (2022) determined that locations of groundwater discharge in the form of springs 
and seeps could be accurately predicted using a MaxEnt machine learning model and 
combinations of topographic predictor variables derived from high-resolution lidar digital 
elevation models (DEM).

We evaluated performance of the six predictor variables identified by Gerlach et al. (2022) in 
locating springs using a MaxEnt machine learning model. We also identified 10 additional 
variables that were commonly used in geospatial modeling of ground water discharge and 
evaluated them as potential predictor variables in the analysis.
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Study Area
Selection of HUC 12 watersheds for the project 
was limited to areas that contained an 
adequate number of field-verified springs from 
the MO springs database. 

The examined watersheds collectively 
contained a total of 76 field-verified springs 
which provided the largest number of 
clustered observations for modeling.
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Data Assembly
The first step in the modeling process involved 
identifying and assembling the predictor 
topographic variables based on review of the 
available literature.

Processing limitations of the MaxEnt algorithm 
in ArcGIS Pro required the 1m DEM to be 
resampled to 3 meter using bilinear 
interpolation. All topographic variables were 
derived from this 3m DEM.

𝐹𝑊𝑆 = ∑ 𝛽𝑖 ∗ 𝐹𝐴𝐶𝑖 ∕ ∑𝐹𝐴𝐶𝑖

Predictor Variable Description

fws flow weighted slope

profcurv profile curvature

plancurv planform curvature

tancurv tangential curvature

casocurv Casorati curvature

torsion contour geodesic torsion

tri terrain ruggedness index

tpi topographic position index

vrm vector ruggedness measure

strdens stream density

strdist distance from stream

spi stream power index

slp slope

hand height above nearest drainage

dem elevation

twi topographic wetness index
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Modeling: MaxEnt
MaxEnt modeling has been used extensively in species distribution modeling and is ideal for this 
analysis because of its ability to work with presence-only observations and small sample sizes 
(Phillips et al., 2006).

Also, MaxEnt is a machine learning algorithm that has the capability to use basis functions to 
transform explanatory variables, allowing more complex modeling of relationships between 
explanatory variables and the dependent variable being predicted. A process called 
regularization is used to identify the input and transformed variables that are most significant 
for prediction. This process also removes data redundancy in the model, thereby addressing the 
issue of potential multicollinearity of explanatory variables (Feng et al., 2019).
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Model Training
Model training parameters for MaxEnt 
modeling included: basis functions (Linear, 
Quadratic, Product and Hinge) for variable 
transformation, spatial thinning with a 
minimum distance of 500m, a value of 100 for 
relative weight of presence to background, C-
log-log probability transformation, and K-Fold 
validation using three groups. 

For each training model, presence probability 
cutoff values of 0.4 and 0.5 were specified for 
model validation. 
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Model Training
The omission rate identifies the percent of 
presence observations misclassified. 

AUC quantifies the ability of the model to 
distinguish between presence and absence of 
springs. A value of 0.5 for AUC represents a 
model that is no better than random and a value 
of 1 is a perfect scoring model. 

K-fold validation divides the sample data into 
three groups. The model iterates through each 
group with one group reserved for validation and 
the other two groups used for training the 
model. The K-fold average is the average percent 
correct for these three runs of the model. K-fold 
average represents the ability of the model to 
predict presence of springs in unknown locations.

Model
Omission 

Rate
AUC

K-fold 

Avg

Prevalence 

cutoff
Functions

Number of 

points

Minimum 

distance

16 var 0.16 0.96 58.9 0.5 all 49 500

16 var 0.10 0.96 56.9 0.4 all 49 500

10 var 0.18 0.95 67.2 0.5 all 49 500

10 var 0.10 0.94 76.0 0.4 all 49 500

6 var 0.22 0.91 66.8 0.5 all 49 500

6 var 0.18 0.92 77.1 0.4 all 49 500
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Final Model
The 10-variable model produced the best 
validation results at the 0.5 prevalence cutoff 
value. This final model was used to predict the 
prevalence probability of springs for the entire 
pilot study area. 

The prevalence probability raster surface 
contains values from 0 to 1, with 0 being low 
probability that the cell will contain a spring 
and 1 being a high probability.
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Accuracy Assessment
For accuracy assessment of the final model, an 
independent testing dataset was assembled 
which consisted of a total of 81 points from 
the karst fen and MO springs databases. 

The prevalence probability surface was then 
classified using 0.75 and 0.5 cutoff values for 
the accuracy assessment. 

These results were also filtered to remove 
smaller areas less than 100 square meters to 
remove noise and improve the interpretability 
of the output.

10



Accuracy Assessment
Accuracy was assessed by examining proximity of 
the classified prevalence probabilities to the 
independent testing sample points. Proximity 
was evaluated for testing samples by counting 
the number of sample points within 10 or 20 
meters of the classified probability results.

The filtered and unfiltered classified probabilities 
all performed well (percent correct greater than 
70%) when evaluating proximity within a 20m 
distance of the reference samples. 

Results indicate the filtered classified 
probabilities are less accurate but the tradeoff is 
increased interpretability of the final classified 
results.

Prevalence 

threshold

10m 

count
10m %

20m 

count
20m %

Number of 

Samples

10 var 

filtered
0.75 46 0.57 59 0.73 81

10 var 

unfiltered
0.75 66 0.81 76 0.94 81

10var filtered 0.5 68 0.84 74 0.91 81

10 var 

unfiltered
0.5 73 0.90 79 0.98 81
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Summary
1. Training validation and the independent accuracy assessment indicates that MaxEnt 

modeling has the potential to be a useful tool for locating ground water discharge springs.

2. The prevalence probabilities produced by the MaxEnt algorithm do not provide specific 
locations of where springs occur but can provide a sampling frame that identifies areas 
where springs are more likely to occur, thus potentially minimizing the amount of field 
investigation required to locate springs.

3. Detailed examination of the results indicate that the model assigns higher prevalence 
probabilities to areas with high slope bordering streams/rivers, at mid to lower elevation, 
where there is higher flow accumulation and stream/river convergence. Typically, these 
areas also have abrupt changes in topography represented by topographic roughness and 
curvature values. These results are consistent with other findings in the reviewed literature 
for modeling of ground water discharge using topographic variables.
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Recommendations
Results could be further improved with a more rigorous assessment and selection of significant 
explanatory variables. Incorporation of variables related to climate and geology may also 
improve model results if available. 

Also, additional machine learning algorithms such as Random Forest could be evaluated to 
determine if a more accurate model can be produced. 

Finally, trained models should be tested to assess model ability to predict prevalence of springs 
in different geographic areas outside of the pilot study area.
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