Mapping Wetlands of Delaware:

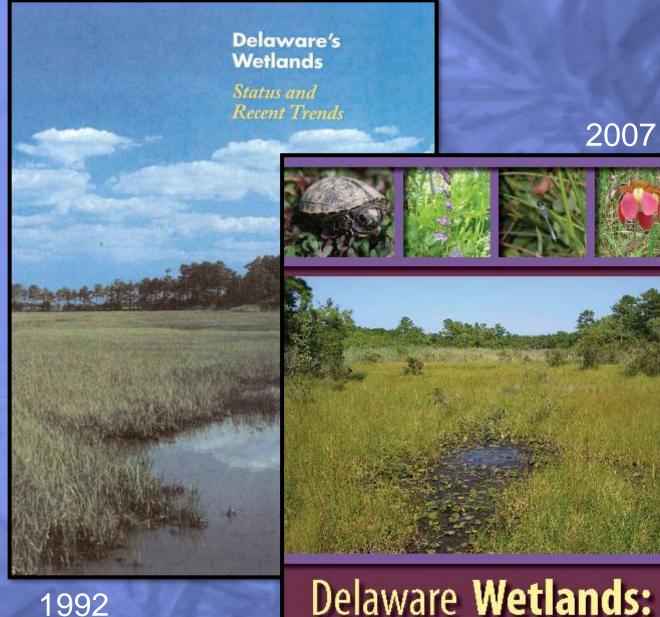
Assessing Spatial and Functional Changes from 2007 to 2017

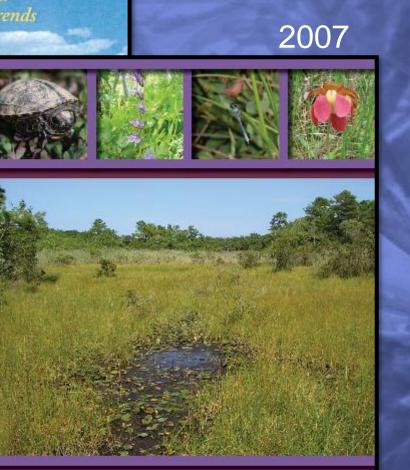
Mark Biddle, PWS

Environmental Program Manager Delaware Department of Natural Resources And Environmental Control

Mapping Specifications

Project completed under contract with The Conservation Management Institute at Virginia Polytechnic and State University and funded by EPA grant with State matching funds


Delaware provided 2017 color-infrared/4-band leaf-off imagery (.25 meter) along with previous years imagery (1997, 2002, 2007, 2012 at .25 or 1 meter for reference)


Other spatial data used: 2018 NAIP photography, National Hydrography Dataset (NHD), SSURGO (Hydric Soils only), NRCS Digital Raster Graphic (DRG), Digital Elevation Model (DEM)

53 full or partial 24k quadrangles within mostly Atlantic Coastal Plain and to lesser degree Piedmont physiographic regions

Cowardin et al. classification along with abiotic classification

Minimum mapping unit accuracy at .25 acre with polygons mapped to .10 acre and smaller

This is the fourth statewide wetland mapping effort (1982, 1992, 2007, 2017)

Status and Changes reports (2017 in production)

Ability to track wetland acreage and change in type, gains and losses

Using LLWW, can assess at the landscape level the potential of wetlands to perform certain functions

1992

Status and Changes from 1992 to 2007

Notable changes applied in 2017 wetland mapping:

NWI Version 2 methodology (USFWS)

Removal of Hydric Wetland (H-wetland) polygons

Use of QL2 LiDAR and DEMs

Higher resolution imagery (9-inch statewide, 3inch in State Parks)

* All created significant changes to final data analysis

NWI Version 2 methodology

Mapped wetland and deepwater habitats as in past and applied Cowardin et al. (1979) to all polygonal features

Incorporated hydrography data (NHD) into the mapping for a comprehensive data set of all wetlands and surface waters

Hydrography data became separate polygons (linears buffered)

Allows for more accurate adaptive management, geospatial summaries, and modeling

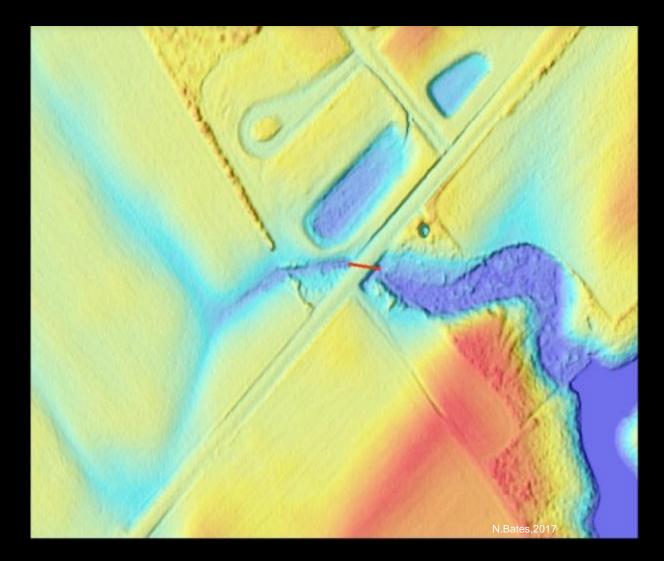
Removal of Hydric Wetland (H-wetland) polygons

2007 mapping a more conservative effort

Essentially created two sets of data: wetlands polygons and 'potential' wetland polygons (H-wetlands)

H-wetlands were areas with hydric soil and natural vegetation but without a visual wet signature on the ground during imagery analysis (~62,000 acres in 2007)

In 2017 either became wetland or not wetland


Use of QL2 LiDAR and DEMs

One of five levels of accuracy established by USGS for elevation data

QL2 is the 'sweet spot' for level of accuracy and affordability

Delaware was part of the post Hurricane Sandy LiDAR collection

Provide much more specific elevation data to inform wetland polygon boundary mapping

High Resolution Imagery (9-inch statewide, 3-inch in State Parks)

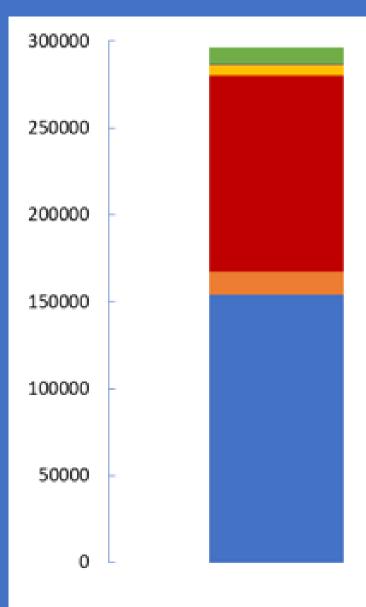
Best 4-band imagery to date for Delaware

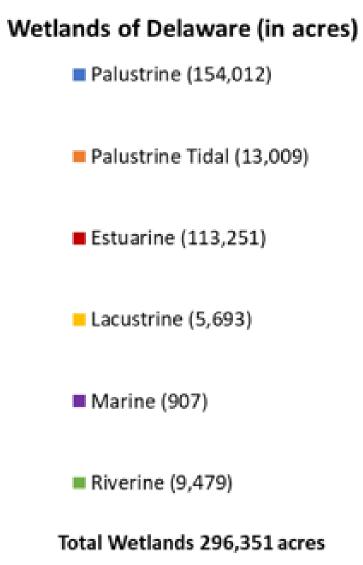
Allowed for better analysis of ground area that may be in shadow (remove consideration as wet signature in processing)

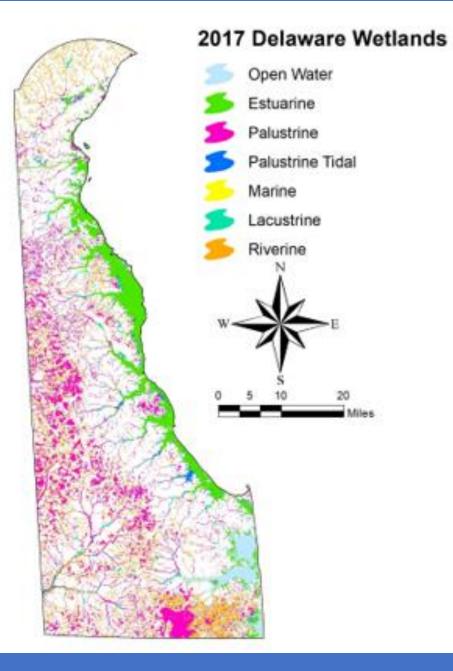
Increased identification and attribution of vegetation types

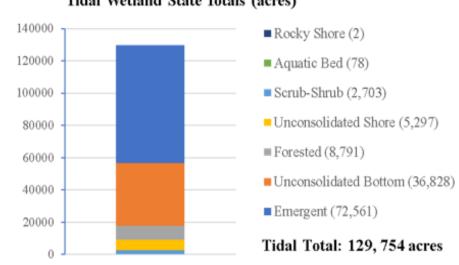
More accurate depiction of polygonal boundaries

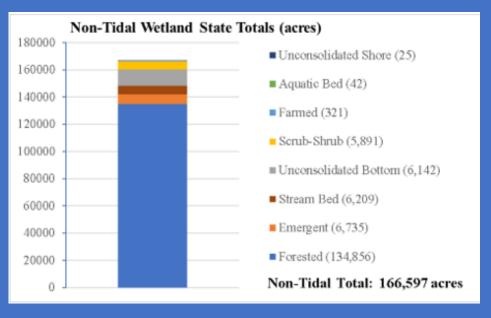
Imagery: Only a snapshot in time – degree of wetness varies


Delaware Wetland Mapping (2017)


Statewide Totals


*320,076 acres in 2007


-- H-wetland removal


-- NHD now as polygons

Tidal Wetland State Totals (acres)

Assessing Wetland Loss, Gain, and Change 2007-2017 (acreage and function)

Mapping provides opportunity to track loss/gain/change over time for spatial extent and functional prediction

Delaware has three Status and Changes reports 1982-1992 (10 years) – 1,905 acres net vegetated loss 1992-2007 (15 years) -- 3,126 acres net vegetated loss *2007-2017 (10 years) – 3,011 acres net vegetated loss

Ability to attribute cause of loss/gain/change

* in production

Wetland CHANGE 2007-2017

Total wetland change 10-year period = 13,822 acres

Change of wetland from one type to another

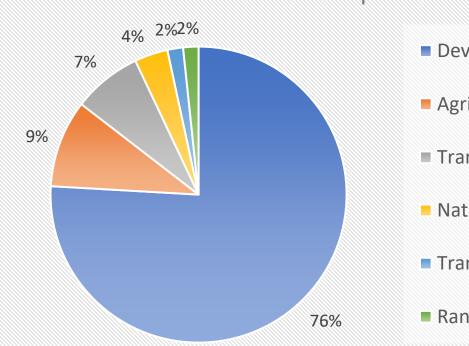
Swamp Milkweed (Asclepias incarnata) B.Haywood

64% tidal changes from vegetated to intertidal flat or open water
875 acres from tidal palustrine to estuarine
-- clear effects of sea level rise and saltwater intrusion

Majority of nontidal wetland acreage change due to succession or technique improvement

E1UBL (2007) to E2EM1P (2017)

E2EM (2007) to E1UB (2017)


Evidence of sea level rise and saltwater intrusion

Forested in 2007 now mainly emergent with standing dead trees in 2017 (ghost forest)

Wetland CHANGE 2007-2017

Wetland Type	Change Type (2007-2017)	Change Description	Acres
	Saltwater intrusion:	Tidal palustrine to estuarine	919.3
		Estuarine unconsolidated bottom	559.2
	Vegetation growth from:	Intertidal unconsolidated shore	93.2
		Tidal freshwater ponds/lakes	14.8
Tidal		Intertidal unconsolidated or rocky shore	2,562.0
Tidal	Vegetation loss to:	Estuarine unconsolidated bottom	1,411.1
		Tidal freshwater ponds/lakes	5.9
	V	Succession	172.8
	V egetation changes:	Increased flooding	431.4
	Total Tidal Changes		6,169.7
Non-tidal	Tidal regime:	Non-tidal to tidal	1,181.3
	Vegetation growth from:	Non-tidal freshwater ponds/lakes	729.8
	Vegetation loss to:	Freshwater ponds/lakes	266.6
		Succession	2,772.6
	V egetation changes:	Increased flooding	314.3
		Deforestation	2,387.9
	Total Non-tidal Changes		7,652.5

Wetland GAIN 2007-2017

the set of the

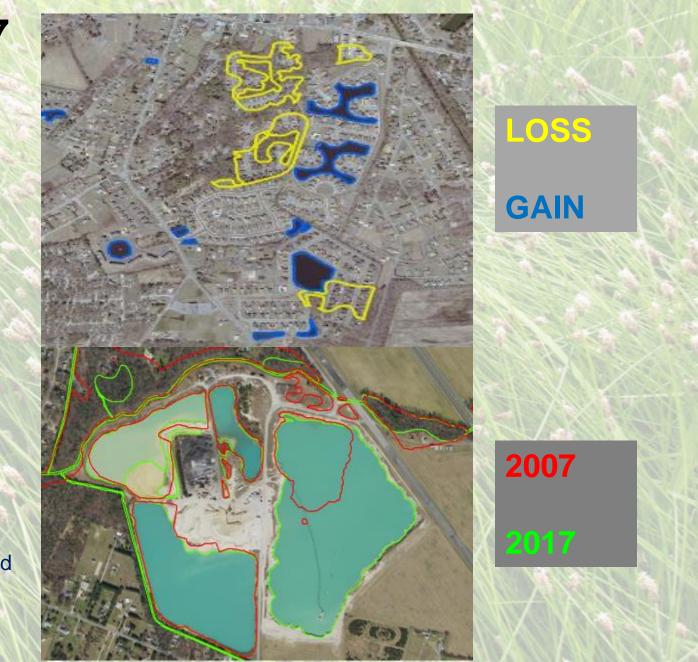
Wetland Gains 2017 per Land Use

- Development
- Agriculture
- Transition
- Natural
- Transportation/Utilities
- Rangeland

Blackgrass Rush (Juncus gerardii) **B.Haywood**

(in correct)	
1176.803643	
19.696792	
20.136748	
42.782315	
88.504761	
112.408322	
893.274705	
	112.408322 88.504761 42.782315 20.136748 19.696792

Wetland GAIN 2007-2017


Total wetland gain 10-year period = 1,176 acres

Most gains are stormwater ponds from residential development *

Sand/gravel operations

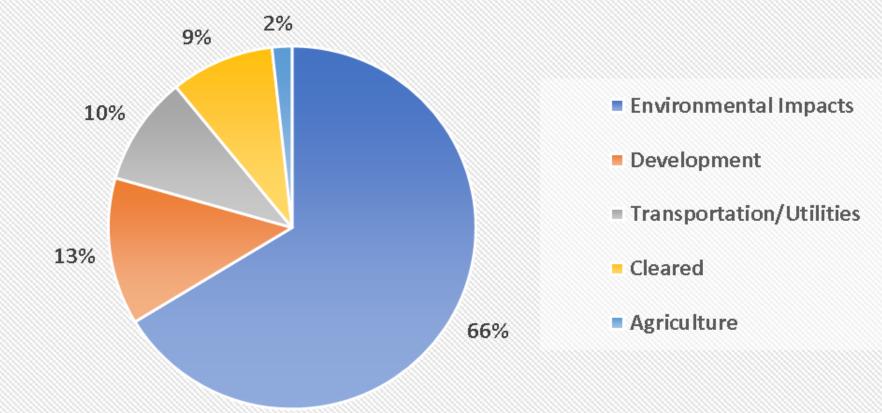
Restoration/mitigation

* stormwater ponds only provide a fraction of wetland functions compared to natural wetlands

Wetland LOSS 2007-2017

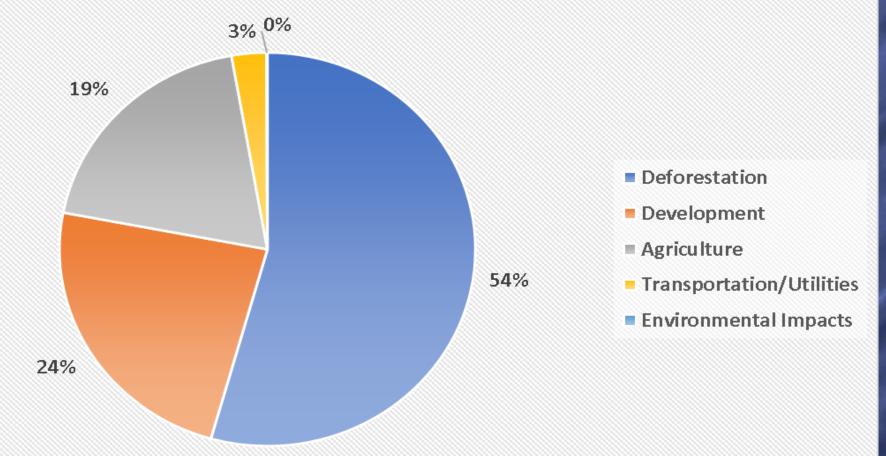
Total wetland loss 10-year period = 3,011 acres

2,773 acres of nontidal wetlands 238 acres to tidal wetlands



Spotted Water Hemlock (Cicuta maculata) B.Haywood

Loss to nontidal wetlands is mostly due to human-induced causes


Loss to tidal wetland is mostly due to natural causes

Causes of Vegetated Tidal Wetland Losses

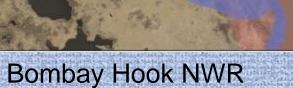
Proportions of vegetated tidal wetland losses from different causes between 2007 and 2017. Only wetlands ≥ 0.25 acres in size were included in calculations of proportions.

Causes of Vegetated Non-Tidal Wetland Losses

Proportions of vegetated non-tidal wetland losses from different causes between 2007 and 2017. Only wetlands ≥ 0.25 acres in size were included in calculations of proportions.

LOSS to Transportation Projects

PF01AHPF01E


2017

LOSS to Development Projects

Now

LOSS to Natural Causes

Cedar Swamp SWA

2007

Now

Prime Hook National Wildlife Refuge and Hurricane Sandy (2012)

Beach dune breached – destroyed one of the most mature freshwater coastal impoundment systems in the Mid-Atlantic region

Has now been successfully restored to tidal marsh system

Prime Hook NWR (cont.)

Evidence of forest retreat due to saltwater intrusion from Hurricane Sandy

Opportunities for new wetland-associated spatial data

Increased focus on coastal changes due to sea-level rise and erosion and we've been tracking coastal wetland loss since 1992

Identified need for additional data to precisely understand and track coastal changes over time

Added secondary data sets:

Ordinary High Water Line (OHWL)

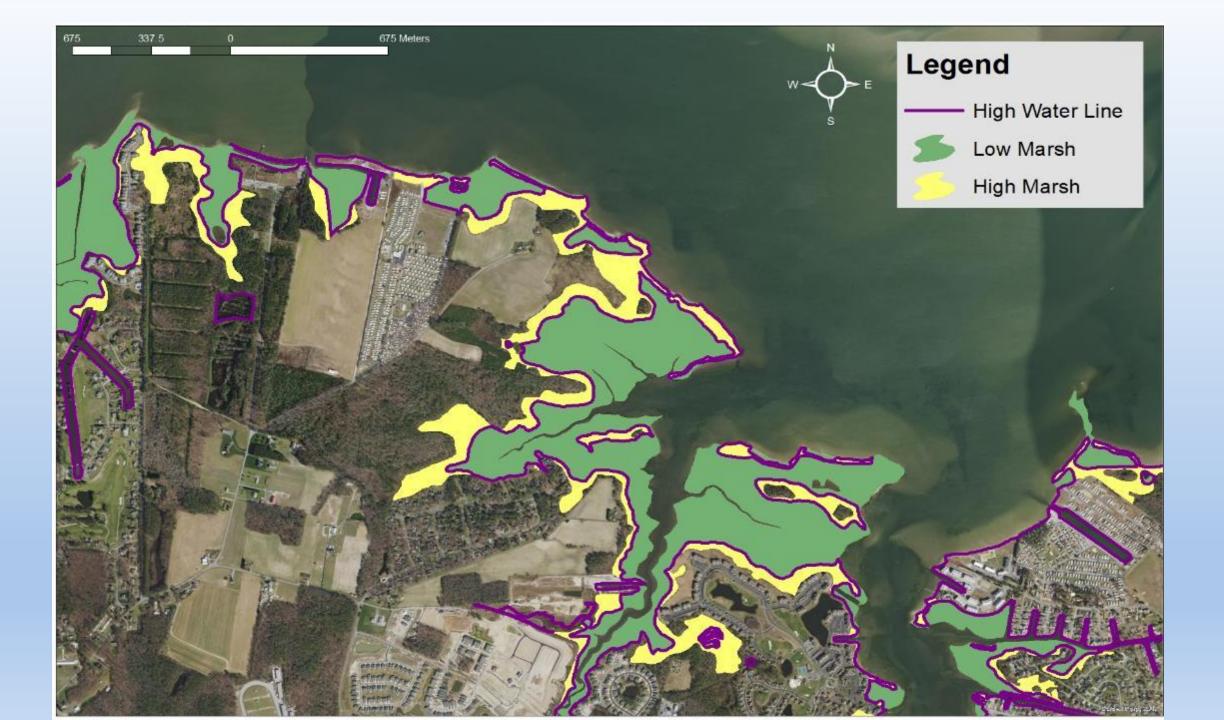
High Marsh and Low Marsh identification (Spartina cynosuroides v. Spartina alterniflora)

(also considered mapping mature (old growth) wetland forests and groundwater seep wetlands)

High marsh and low marsh acreage in Delaware based on the 2017 high marsh and low marsh wetland maps.

Marsh type	Subsystem	Class	Total Acreage	
	Intertidal			
	Vegetated	Emergent	17,933	
		Scrub-shrub	339	
High marsh		Forested	110	
	Nonvegetated	Unconsolidated shore	246	
		Rocky shore	2	
	Total Mapped		18,630	
	Intertidal			
Low marsh	Vegetated	Emergent	52,983	
	Nonvegetated	Unconsolidated shore	4,900	
	Total Mapped		57,883	

Example of Estuarine wetland identified as 'low-marsh'



Example of Estuarine wetland identified as 'high marsh' (5=*Phragmites australis*)

Example of Ordinary High Water Line

Wetland Functional Analysis

Use of abiotic features to predict wetland functions

LLWW (Tiner, 2003) Landscape Position, Landform, Water Flow Path, Waterbody Type (derived from HGM classification)

First applied in Delaware as part of the 2007 statewide wetland mapping

Ability to predict at landscape level the potential for wetland types to perform 11 functions at a high or moderate level

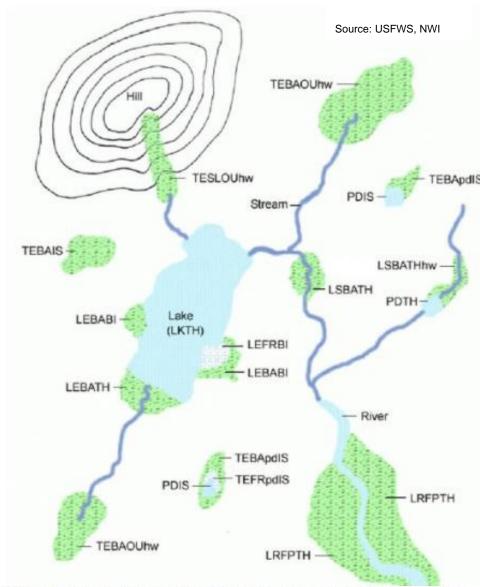


Figure 1. Application of LLWW descriptors to a region with nontidal wetlands. Landscape positions: LR – lotic river, LS – lotic stream, LE – lentic, and TE – terrene; Landforms: BA – basin, FR – fringe, FP – floodplain, SL – Slope; Water flow paths: OU – outflow, IS – isolated, TH – throughflow, BI – bidirectional-nontidal; other descriptors: pd – pond (association), hw – headwater; Waterbodies: PD – pond, LK – lake. Note: Landscape position can be added to lakes and ponds if desirable.

11 Wetland Functions (LLWW)

- 1. Surface Water Detention (SWD)
- 2. Coastal Storm Surge Detention (CSS)
- 3. Streamflow Maintenance (SM)
- 4. Nutrient Transformation (NT)
- 5. Sediment Retention (SR)
- 6. Carbon Sequestration (CAR)
- 7. Bank and Shoreline Stabilization (BSS)
- 8. Provision of Habitat for Wildlife (OWH)
- 9. Provision of Fish and Aquatic Invertebrate Habitat (FAIH)
- 10. Provision for Waterfowl and Waterbird Habitat (WBIRD)
- 11. Provision for Unique, Uncommon, or Highly Diverse Wetland Plant Communities (UWPC)

Wetland Function	2017 A creage	% of DE's Wetlands likely performing at moderate to <u>high levels</u>	2007 Acreage
 Surface Water Detention (This function is limited to freshwater wetlands; the role of coastal wetlands in water storage is handled by the Coastal Storm Surge Detention function.) 	150,203	50.6	171,045
 Coastal Storm Surge Detention (This function includes tidal wetlands plus contiguous nontidal wetlands subject to flooding during storm 	94,096	31.8	85,523
 Streamflow Maintenance (These wetlands are sources of streams or along first order perennial streams or above.) 	112,825	38.1	134,620
4. Nutrient Transformation	261,078	88.0	246,847
5. Carbon Sequestration	256,802	86.6	249,012

Wetland Function	2017 Acreage	% of DE's Wetlands likely performing at moderate to <u>high levels</u>	2007 Acreage
6. Sediment and Other Particulates Retention	149,215	50.3	156,756
7. Bank and Shoreline Stabilization	203,469	68.6	182,105
8. Fish and Aquatic Invertebrate Habitat Stream Shading	136,087 106,349	45.9 35.8	78,230 36,935
9. Waterfowl and Waterbird Habitat Wood Duck	85,691 24,423	29.0 8.2	80,920 25,691
10. Other Wildlife Habitat	230,112	77.6	248,090
 11. Unique, Uncommon, or Highly Diverse Wetland Plant Communities (The following types are included in this category: estuarine aquatic beds, regularly flooded salt marsh (low marsh), slightly brackish tidal marshes, tidal freshwater flats (e.g., wild rice beds), marshes and shrub swamps, Atlantic white cedar swamps, bald cypress swamps, and lotic fringe wetlands.) 	Did not assess	N/A	54,963

Wetland Functional Trends Assessment

- Significant differences in most functions between 2007 and 2017 that don't align well with the spatial extent (acreage) differences
- Improved mapping techniques, succession/change in type, gains/losses, and the incorporation of hydrography data as polygons contributed to wide swings in functional prediction
- Some functions increased and some decreased
- Overall accuracy improved which will lead to more concise functional assessment and tracking over time

Acknowledgements/Credits

Dave Orndorff, Scott Klopfer, Daniel Cross – Virginia Tech Conservation Management Institute as project contractor and collaborators

Alison Rogerson, Erin Dorset, Kenny Smith, Brittany Haywood – Delaware Wetland Monitoring and Assessment Program (WMAP) for intensive data analysis

Herb Bergquist, John Swords, Megan Lang, Mitch Bergeson, Rusty Griffin – National Wetlands Inventory (NWI) for guidance and data review

EPA Region 3 for grant funding and support, Delaware Coastal Programs & Division of Water for funding

> Graphics/Images courtesy of Delaware Wetland Monitoring and Assessment Program

Thank you for the opportunity: Association of State Wetland Managers and Wetland Mapping Consortium

Questions?

Visit:

Purify Provide Protect

http://de.gov/delawarewetlands

@Delawarewetlands
@De_wetlands

Mark Biddle, PWS Delaware DNREC, Division of Watershed Stewardship Watershed Assessment Section

302-739-9939 Mark.Biddle@delaware.gov